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Abstract—Several algorithms may be used to implement a
given collective communication operation, with differing perfor-
mance based on the size of the data being sent, communication
hardware on the physical computers, and network topologies.
Selecting the right algorithm is particularly important in high-
performance computing, where the distributed nature of the
computation makes message passing both an essential component
and potential bottleneck.

Open MPDI’s built-in collective functions dynamically select
which algorithm to use on the basis of the size of the mes-
sage, when benchmarked against existing clusters. However, this
approach cannot guarantee that Open MPI’s benchmarks are
applicable to any given compute cluster. I benchmark Open
MPD’s algorithms against those optimised for short and long
vector length messages. I find that, while Open MPI’s built-
in selected algorithm is frequently a good choice for any given
collective and vector length, different collective implementations
outperform the default under certain parameters on the Schooner
supercomputer.

I. INTRODUCTION

Collective communication operations are foundational to
the practice of high-performance computing, particularly in
distributed memory computer architectures common to super-
computers like Schooner at the University of Oklahoma. A
common implementation of collective communication opera-
tions is the Open MPI library, which implements the Message
Passing Interface. In their 2007 paper, Chan et al [1] provide a
comprehensive, systematic review of seven common collective
operations: broadcast, reduce, scatter, gather, allgather, reduce-
scatter, and allreduce.

These collectives underpin the message-passing model of
distributed computation, and their implementation is nontriv-
ial. Each collective operation executed will incur some amount
of latency and use some amount of bandwidth, and the amount
of these used varies not only with the amount of data being
sent and number of destinations to which it is sent, but also
with the implementation of the collective operation being used
to send it.

In an attempt to minimise both latency and bandwidth, the
Open MPI library uses a strategy — fixed decision mode —
to determine which algorithm is the best to use for a given
collective operation, given the data size [2]. However, the
decision parameters for the algorithm selection cannot account
for every compute cluster or network topology that might be
encountered.

Chan et al provide two algorithms for each collective
communication operation, optimised for short and long data

vector lengths respectively. I benchmarked these algorithms,
as well as Open MPTI’s selected algorithm, across varying data
sizes for each collective.

II. BACKGROUND

Chan provides a comparison of lower bounds of each
collective operation, as well a discussion of the difference in
effective cost when sending short vectors of data in messages
compared to long vectors. They also briefly discuss different
topologies that may be used to conceptualise a network of
distributed processors. While these are useful discussions,
they run up against the realities of real-world execution on a
supercomputer. First, messages sent between different physical
nodes are sent through switches, meaning that the physical
network is neither linear, nor a torus, nor fully connected,
though with the speed of the switches we may assume that
it is fully connected. Second, while implementations such as
Open MPI could analyse the size of the data being sent in a
collective operation and strategically choose an algorithm to
use, in practice the question of what the best algorithm to use
for a given operation will vary from system to system, and
indeed within each system as resource availability changes.

The question of selecting an optimal strategy for collective
operations is not a novel one: since Chan’s paper renewed
interest in rigorous examination of collective algorithms,
numerous articles have proposed different communication
models for improved collective performance, with variations
both in the success of those models, but crucially also with
various benchmarks for success. Rico-Gallego et al (2019)
[3] undertook a meta-analysis of those models, noting that
most attempt to achieve two objectives: accurate prediction
of communication time and to serve as a reliable guide for
implementation of those models. Cai and Liu et al (2021)
[4] demonstrate a method for synthesising optimal models
given the parameters of network topology and the criterion to
optimise; that is to say, latency-optimal or bandwidth-optimal
communication.

To better understand the performance of different collective
models, I implemented the seven collective communication
operations in three ways: the short and long vector algorithms
described by Chan, and the built-in functions provided by
Open MPIL.



III. THEORY
A. Broadcast, scatter, gather, etc.

Chan models the cost of each collective in terms of its
latency, bandwidth, and computation cost. They use the fol-
lowing terminology:

o n is the length of the data — that is to say, we are sending

a vector of n elements.

¢ p is the number of nodes in our network.

o « is the cost of setting up a message, and 3 is the cost
of sending a single data item. Consequently, we say that
the cost of sending a message is a + nf.

e 7y is the cost required to perform an arithmetic operation.
For example, in a reduction, this is the cost to add one
item to the sum or average being computed.

Chan establishes lower bounds on each collective operation,
based on the assumption that the network is fully connected,
bidirectional (that is, messages travelling opposite directions
in the network will not block each other), and that each node
may send to and receive from at most one other node during
a given timestep. I use the same assumptions for my analysis
throughout this report.

Collective operation | Lower performance bound

Broadcast [logpla+ np
Reduce [logpla + nfB + pp%lnv
Scatter [log pla + p;I nB
Gather [logpla + p;I nB

Allgather [log pla + pp%l np

Reduce-scatter
Allreduce

[log pla + 2 (8 + )
[log pla + E2n(28 +7)

TABLE I
LOWER BOUND OF EACH COLLECTIVE OPERATION (CHAN 2019).

B. Rotation

Chan does not discuss a rotation collective operation, where
the data is initially segmented across all nodes (similar to the
state of the network before a gather operation), and each node
rotates the data it holds. For example, the data in node 1 is
sent to node 0, the data in node 2 is sent to node 1, and so
on.
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Node 0 | Node 1 | Node 2 | Node 3
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The lower bound of the bandwidth cost of this operation is
3. n items are distributed across p nodes, so if all items are
distributed evenly across the nodes then every node will send

n/p items. Of course, each node must receive that number of
items, but that bandwidth cost is accounted for by the sending
node. Each item has a cost of 3 to send, which leaves us with
this bandwidth lower bound.

The lower bound of the latency of this operation is a con-
stant «, as every node will need to send exactly one message
to rotate the data. As there is no additional computation, this
yields a total lower performance bound of « + %6 for this
operation.

IV. MECHANISM
A. Algorithm design

The implementation of each collective operation is built
of one or more algorithms described by Chan, which I will
call primitives. These may be divided into three classes of
algorithm: simple, minimum spanning tree, and bucket.

The simple algorithms naively send or receive messages
from the root node, looping through the list of peers to
send or receive a message. These algorithms are used in the
long vector versions of the scatter and gather algorithms. An
example of the simple scatter algorithm is given below:

smpl_scatter(x, our_id, root_id, num_nodes)

if our_id == root_id:

0 to num_nodes:
= our_id:
MPI_Send(x, 1)

for i in
if 1

else:

MPI_Recv (x, root_id)

Chan observes that these algorithms have a cost of (p —
Da+ pp%lnﬂ, worse than the minimum spanning tree algo-
rithm, but finds that it may be superior in practice because
the § term may be smaller than expected due to the cost
overlapping with other messages. For vectors of length < 227,
I find this to be the case for scatter operations, but not gather
(see sections V-C and V-D).

The minimum spanning tree algorithms partition the set of
nodes into two subsets, and the root node selects a destination
node in the middle of each subset. That destination node then
itself becomes a root node, partitions its subset, and selects
new destination nodes. This process repeats recursively until
all nodes have sent or received the data. Figure 4.1.2 illustrates
the sending of data across a minimum spanning tree.

MST algorithms, while used in both short and long vector
implementations of several collectives, tend to be used in the
short vector versions because they achieve a latency lower
bound of [log p]a, while the simple algorithms incur (p— 1)«
and bucket algorithms incur pa latency costs.

Bucket algorithms conceive of the network as a ring and
pass data around the ring. This is particularly effective in an
operation like allgather, where the data is initially scattered
across every node. Each node can send its subvector to one
neighbour and receive from the other, then send along the
newly received data on the next timestep.

These algorithms tend to form the basis for the long
vector algorithms because of the reduced bandwidth cost. An
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Fig. 4.1.2. Bucket commmunication. Observe the data is shared in p — 1
timesteps.

MST algorithm, sending data from a root node, will incur a
[log p]np cost, while a bucket algorithm will only incur a cost
of 2=1np, at the expense of sending more messages.

Chan develops the short and long vector versions of each
collective operation from these primitives. The construction of
each collective is described in table II.

B. Collective timing

For each collective communication operation, I bench-
marked Chan’s algorithms for short and long vectors, as
well as the Open MPI built-in collective (which I refer to
as short, long, and builtin, respectively) on OU’s Schooner
supercomputer. | timed the execution of each algorithm 30
times on 8 different lengths of vectors being sent, ranging
from 220 elements to 227 elements. Each run had 32 virtual
processors, but in order to examine the effect of different
physical topologies, the runs were done over 2, 4, and 8
physical compute nodes.

I created a new run for each combination of collective
operation, algorithm type (short, long, or builtin), and number
of physical nodes (2, 4, or 8). Each combination was run 30
times, and each run iterated over the data sizes to benchmark.

Collective operation

Short vector algorithm

Long vector algorithm

MST Scatter,

Broadcast MST Broadcast Bucket Allgather
Bucket Reduce-scatter,
Reduce MST Reduce MST Gather
Scatter MST Scatter Simple Scatter
Gather MST Gather Simple Gather
Allgather MST Gather, MST Broadcast Bucket Allgather

Reduce-scatter

MST Reduce, MST Scatter

Bucket Reduce-scatter

Bucket Reduce-scatter,

Allreduce MST Reduce, MST Broadcast Bucket Allgather
TABLE 11
ALGORITHMS USED IN THE IMPLEMENTATION OF COLLECTIVE
OPERATIONS.

The timing for each data size within each run was collected
using Open MPI’s MPI_Wt ime function. Only the time spent
executing the collective operation was measured; the time to
allocate or free memory between operations was not counted.

for (data_size in 2720 to 2727) {
input_arr = (floatx*) calloc(data_size,
sizeof (float));
output_arr = (floatx) calloc(data_size,

sizeof (float));
setup_collective (input_arr, data_size,
my_rank, num_procs);
MPI_Rarrier (MPI_COMM_WORLD) ;
double tic = MPI_Wtime () ;
OPERATION (input_arr,
data_size,
num_procs) ;
MPI_Wtime () ;
toc - tic;

int opr =
my_rank,

double toc
timings[i] =

V. ANALYSIS

For each collective communication operation, I compare
the performance of each algorithm on 2, 4, and 8 physical
nodes, though each run had 32 processes. The vector size is
the number of elements used in each operation, where each
element is a C £1oat. On the Schooner supercomputer, floats
are 4 bytes large. The time elapsed for each operation is
shown, measured in seconds.

A. Broadcast

The broadcast operation distributes data from one source
node to all other nodes. The short vector algorithm is a
primitive, the minimum spanning tree broadcast, while the
long vector algorithm is a minimum spanning tree scatter
followed by a bucket allgather.

output_arr,
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Fig. 5.1.3. Broadcast collective, 8 compute nodes.

Generally speaking, the builtin algorithm is the best per-

B. Reduce

The reduce operation collects data spread across the network
to the root node and applies some operation to it, such
as finding the sum or average of numerical data. In these
experiments, the data was simply summed. Like broadcast, the
short vector algorithm is a primitive — minimum spanning tree
reduce. The long vector algorithm is a bucket reduce-scatter
followed by a minimum spanning tree gather.
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Fig. 5.2.3. Reduce collective, 8 compute nodes.

The builtin operation is the clear winner across every
physical topology. The short vector algorithm consistently
outperforms the long vector algorithm. Although the primitives
used in the short and long vector algorithms are reused in
several other collective operations, in no other case does the
Open MPI builtin algorithm so dramatically outperform both
the short and long vector algorithms.

C. Scatter

The scatter operation distributes one subset of a vector held
at the root process to each other process in the network. The
short vector algorithm is the minimum spanning tree scatter
algorithm, while the long vector algorithm is the ’simple’
scatter algorithm.
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Fig. 5.3.1. Scatter collective, 2 compute nodes.
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Fig. 5.3.2. Scatter collective, 4 compute nodes.
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Fig. 5.3.3. Scatter collective, 8 compute nodes.

In this case, I replicate Chan’s finding that the simple scatter
algorithm outperforms the minimum spanning tree algorithm
in practice, despite having a worse lower performance bound.
This is true independent of the number of physical nodes used.
With the exception of one outlier in the 4 physical nodes trial,
the long vector algorithm had roughly equal performance to
the builtin algorithm.

D. Gather

Gather is the scatter operation’s inverse. Given sub-vectors
of data scattered across processes in a network, the gather
operation collects the data in the root process. The short vector
algorithm is the minimum spanning tree algorithm; the long
vector algorithm is the ’simple’ gather algorithm.
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Fig. 5.4.2. Gather collective, 4 compute nodes.
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Fig. 5.4.3. Gather collective, 8 compute nodes.

Unlike the scatter operation, I did not observe the simple
algorithm for gather outperforming the minimum spanning
tree approach. In fact, the MST algorithm outperformed the
simple algorithm and Open MPI’s builtin gather operation
significantly, regardless of the number of physical nodes used.

E. Allgather

Similarly to the gather operation, allgather collects data
that is held in processes across the network. Unlike gather,
however, allgather collects the data to every process in the
network, rather than just one root node. The short vector
algorithm is a minimum spanning tree gather followed by an
MST broadcast, while the long vector algorithm uses a bucket
allgather approach.
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Fig. 5.5.1. Allgather collective, 2 compute nodes.
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Fig. 5.5.2. Allgather collective, 4 compute nodes.
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Fig. 5.5.3. Allgather collective, 8 compute nodes.

Again, the long vector algorithm was the best performer
of the three. This is most pronounced across two physical
nodes, while the builtin algorithm is more competitive when
using four or eight. The performance penalty for using the
short vector algorithm became more pronounced as the number
of physical nodes increased. This is significant because it
suggests that the latency penalty incurred by sending more
messages using the bucket algorithm is not particularly im-
portant, even across different physical compute nodes.

F. Reduce-scatter

The reduce-scatter operation, as the name suggests, per-
forms a reduction on the data and scatters the results across
every node. This is a reduction followed by a scatter (as
opposed to reduction followed by a broadcast, which is an
allreduce). The short vector algorithm is a minimum spanning
tree reduce followed by an MST scatter, while the long vector
algorithm is a bucket reduce-scatter.

reduce_scatter collective timings, 2 physical nodes
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Fig. 5.6.2. Reduce-scatter collective, 4 compute nodes.

reduce_scatter collective timings, 8 physical nodes
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Fig. 5.6.3. Reduce-scatter collective, 8 compute nodes.

The experiments gave almost identical results for the builtin
and long algorithms, to such an extent that we can be rea-
sonably certain that Open MPI uses a bucket algorithm for
its reduce-scatter operation. The short vector algorithm was
markedly worse across all physical nodes.

G. Allreduce

The allreduce operation performs a reduction and broadcasts
the full result to every node in the network. The short vector
algorithm is a minimum spanning tree reduce followed by an
MST broadcast, and the long vector algorithm is a bucket
reduce-scatter followed by a bucket allgather.



allreduce collective timings, 2 physical nodes
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Fig. 5.7.2. Allreduce collective, 4 compute nodes.
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Fig. 5.7.3. Allreduce collective, 8 compute nodes.

The builtin algorithm performed best here, followed by the
long vector algorithm. With the exception of broadcast, the
primitives that make up the short and long vector algorithms
(MST reduce, MST broadcast, bucket reduce-scatter, bucket
allgather) match or outperform the builtin algorithm for each

operation they are designed for, suggesting that constructing
an allreduce operation from other collective operations is not
an optimal approach.

H. Discussion

For the scatter, gather, allgather, and reduce-scatter collec-
tives, one of the algorithms Chan describes outperforms the
Open MPI builtin operation. The builtin algorithm outperforms
the others for the broadcast, reduce, and allreduce collectives.
A summary of the best performing algorithm class for each
collective is given in table III.

Collective operation | Best algorithm class
Broadcast builtin
Reduce builtin
Scatter long
Gather short
Allgather long
Reduce-scatter long/builtin
Allreduce builtin
TABLE III

BEST PERFORMING CLASS OF ALGORITHM, BY COLLECTIVE.

The results are reflective of the challenges in building
a one-size-fits-most algorithm for collective communication
operations. No class of algorithms consistently performed best,
regardless of the number of physical compute nodes used.

Despite using the same set of data sizes across every
experiment, there seemed to be no obvious answer to whether
or not the vectors were ’short’ or ’long’ based on algorithm
performance. These are, of course, relative terms — the smallest
length I benchmarked, 22(0) or about one million elements, is
not particularly short in many contexts. What length of vector
is considered short or long is clearly variable across different
collective operations.

There was no clear ’crossover point’ where any class of
algorithm ceased to be the best for a given operation, nor
did the builtin algorithm ever appear to switch to a different
implementation, despite this being the purpose of Open MPI’s
fixed decision mode. Further benchmarks are needed against
different data sizes to determine at which data size such a
point lies.

VI. SUMMARY

Collective communication operations are integral to the
high-performance computing applications that occur on OU’s
Schooner supercomputer. Chan et al describe the lower per-
formance bounds of several of these operations, as well as
several methods for implementing them. I describe the lower
performance bound of an additional collective communication
operation, the rotation.

Chan’s algorithms use three different approaches to the
problem of communicating data: the simple message-passing
approach, the minimum spanning tree, and the bucket algo-
rithm. These algorithms, as well as different combinations of
these algorithms, are intended to reduce the time needed to
complete a given collective communication operation when
sending short and long vectors.



I find that on the Schooner supercomputer, no algorithm
class consistently outperformed the others. Open MPI’s builtin
methods were the best performers for the broadcast, reduce,
and allreduce operations. Chan’s long vector algorithms were
best for the scatter, allgather, and reduce-scatter operations,
while their short vector algorithm was best for the gather
operation.

I did not determine any data size at which one class of
algorithm ceases to be the best for a given operation and
another class begins to outperform it. Further work is needed
to find the vector lengths for which each algorithm class
performs best and construct a decision tree that is optimal
for Schooner, as Open MPI’s fixed-decision strategy attempts
to do for arbitrary distributed systems.
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